photo-blog3

7 Materials that Are Set to Change the Building Industry

With each year, materials and ideas develop and innovate, building on the foundations laid by decades and decades of previous architectural feats. The development of new building materials allows architects to better realise their vision, fortifying constructions with optimised strength, durability and flexibility.
These radical innovations, as well as being functionally essential, create more sophisticated, revolutionary means of construction. Whether developed specifically for buildings or created for other fields, new technologies have the potential to impact lifespan, appearance and functionality.
With the rapid development of new materials, the building industry is almost always evolving. While it’s impossible to tell exactly where it’s heading, recent progress can at least give us a clue as to what might change the building industry in the near future. As materials become more advanced and sophisticated, so too will the buildings in which they’re used. Here, we’ll delve into the materials being leveraged by architects, designers and scientists that look set to alter the foundations of the building industry in the near future, along with some innovations that have already impacted things considerably.

Self-healing concrete :

Commonly used across the building industry, concrete’s ubiquity is perhaps only matched by the frequency with which it cracks. That is to say, a lot. A concrete with the capabilities to patch over its own fractures would undoubtedly be a boon to the building industry, eliminating cracks, repairs, and leaks, along with the need for damp-proofing. Strangely enough, however, the idea of a self-healing concrete has been around since ancient Rome, where it was used underwater, but modern approaches are comparatively more sophisticated.

Hardwood cross-laminated timber :

Made from layers of solid lumber, cross-laminated timber has proven to be a crucial alternative for buildings needing sustainability and durability. With its alternating, layered design, it’s practically as strong as reinforced concrete and structural steel, and could theoretically be used in the same way as the latter in similarly-designed structures

Bioplastic :

Especially strong and long-lasting, plastic is also one of the most contaminant elements in the world thanks to its molasses-slow process of biodegradation. Bioplastic, made from algae, marine chitins, cellulose and a plethora of other renewable biomass resources, means it degrades in a much speedier manner after being discarded. An excellent green alternative to plastic made with fossil fuels, its sophisticated properties would well be used in cladding, structural elements and other architecture-strengthening structures.

Homeostatic facades :

We’ve all been in a place of work whose conditions, whether it’s overheating or too much light, can prove stifling over time. The idea behind homeostatic facades is that the material they’re built with adjusts to these exterior conditions to help create the optimal desired interior conditions.

Artificial spider silk :

A material whose use is not quite as set in stone as the others on this list, the development of artificial spider silk has nevertheless been making progress. After decades of getting caught up in a web of rumour mill spin and hearsay, the material’s tangled story could finally be on its way to a happy ending thanks to a Japanese company called Spiber Inc.
The company claims artificial spider silk is 340 times tougher than steel and is poised to become a sustainable next-generation material ‘unlike any the world has ever seen’. Despite its progress, the material is still vulnerable to weather which has kept it confined to workshops, labs and experimental projects for the time being.

Tags: No tags

Add a Comment

Your email address will not be published. Required fields are marked *